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A B S T R A C T 

Comparison of appropriate models to describe observational data is a fundamental task of science. The Bayesian model evidence, 
or marginal likelihood, is a computationally challenging, yet crucial, quantity to estimate to perform Bayesian model comparison. 
We introduce a methodology to compute the Bayesian model evidence in simulation-based inference (SBI) scenarios (often 

called likelihood-free inference). In particular, we leverage the recently proposed learned harmonic mean estimator and exploit 
the fact that it is decoupled from the method used to generate posterior samples, i.e. it requires posterior samples only, which may 

be generated by any approach. This flexibility, which is lacking in many alternative methods for computing the model evidence, 
allows us to develop SBI model comparison techniques for the three main neural density estimation approaches, including 

neural posterior estimation, neural likelihood estimation, and neural ratio estimation. We demonstrate and validate our SBI 
evidence calculation techniques on a range of inference problems, including a gravitational wav e e xample. Moreo v er, we further 
validate the accuracy of the learned harmonic mean estimator, implemented in the HARMONIC software, in likelihood-based 

settings. These results highlight the potential of HARMONIC as a sampler-agnostic method to estimate the model evidence in both 

likelihood-based and simulation-based scenarios. 

Key words: Machine Learning – Numerical Methods – Software – Statistics – Simulation-based Inference. 

1

B  

t  

t  

c  

d  

r  

r  

c  

t  

i  

t  

m  

B  

2
 

t  

i  

i  

e  

n  

2  

H  

m  

h  

n  

�

(  

i  

a  

p  

s  

e
 

(  

t  

&  

b  

m  

o  

e  

o  

s
 

m  

t  

(  

e  

p  

i  

S  

t  

t  

c  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/710/7382245 by guest on 03 M

ay 2025
.  I N T RO D U C T I O N  

ayesian model comparison provides a robust and principled sta-
istical framework for the selection of appropriate scientific models
o describe observational data. The key quantity to perform model
omparison in a Bayesian inference framework is the model evi-
ence, or marginal likelihood, whose estimate allows one to assign
elative weights to different models (see e.g. Trotta 2008 for a
e vie w of Bayesian model comparison, particularly in the context of
osmology). Ho we ver, obtaining a precise and accurate estimate of
he Bayesian model evidence is a computationally challenging task,
nvolving a multidimensional integral which may quickly exceed
he available computational resources for parameter spaces of even

oderate dimensions. A variety of techniques for computing the
ayesian model evidence have been proposed (see e.g. Friel & Wyse
012 ; Llorente et al. 2023 for re vie ws). 
One of the most widely used classes of algorithms for estimating

he model evidence, particularly in astrophysics and cosmology,
s nested sampling (Skilling 2006 ), a method for which posterior
nferences can also be computed as a byproduct (see e.g. Ashton
t al. 2022 ; Buchner 2023 for re vie ws of nested sampling). Popular
ested sampling algorithms, such as MULTINEST (Feroz & Hobson
008 ; Feroz, Hobson & Bridges 2009 ) and POLYCHORD (Handley,
obson & Lasenby 2015a , b ) have been of remarkable success in
ultiple research areas. Ho we ver, some of them can struggle in

igh-dimensional parameter spaces. The recently proposed proximal
ested sampling framework scales to very high-dimensional settings
 E-mail: a.spuriomancini@ucl.ac.uk 
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Cai, McEwen & Pereyra 2022 ). Ho we ver, proximal nested sampling
s restricted to log-conv e x likelihoods. Nev ertheless, such likelihoods
re common and so proximal nested sampling is likely to be
articularly useful for inverse imaging problems. As the name
uggests, nested sampling couples the computation of the model
vidence to the sampling approach, restricting its flexibility. 

The recently proposed learned harmonic mean estimator
McEwen et al. 2021 ) for computation of the model evidence remo v es
his restriction. While the original harmonic mean estimator (Newton
 Raftery 1994 ) can fail catastrophically since its variance may

ecome very large and may not be finite (Neal 1994 ), the learned har-
onic mean solves this problem by learning an approximation of the

ptimal internal importance sampling target distribution (McEwen
t al. 2021 ). Critically, the learned harmonic mean estimator requires
nly samples from the posterior and so is agnostic to sampling
trategy, affording it great flexibility, which is crucial to this work. 

The need for efficient and reliable methods for computing the
odel evidence applies not only to likelihood-based settings, but also

o simulation-based inference (SBI) frameworks. In the SBI setting
sometimes referred to as likelihood-fr ee infer ence ), the likelihood is
ither not available or too costly to be evaluated, and the inference
rocess relies solely on the ability to simulate observables. Approx-
mate Bayesian computation (ABC) is the traditional, prototypical
BI technique that relies on rejection sampling of parameter sets on

he basis of a similarity metric between the simulated observables and
he observations (see e.g. Beaumont 2019 ). Ho we ver, ABC methods
an easily require an unfeasibly large number of simulations to
each convergence, limiting their applicability. More recently neural
ensity estimation techniques have been introduced to surrogate
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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ensities directly. Such no v el frameworks hav e seen numerous 
uccessful applications in various scientific areas, carrying great 
romise for the future due to their ability to a v oid the e v aluation
f an explicit (and possibly incorrect) likelihood function, while 
imiting the number of simulations with clever use of cutting-edge 
achine learning algorithms. For a recent re vie w of SBI techniques
e refer the reader to Cranmer, Brehmer & Louppe ( 2020 ). Neural
ensity estimation methods have recently found remarkable success 
n cosmology, with general-purpose open-source software readily 
vailable (e.g. PYDELFI 1 by Alsing et al. 2019 and SWYFT 2 by Cole
t al. 2022 ). 

The development of new SBI techniques has so far mostly concen- 
rated on optimizing the task of parameter estimation, while model 
election has received less attention. Nevertheless, model selection 
s a critical component of a complete statistical analysis, particularly 
n scientific fields where selection of the appropriate model is often 
he fundamental question. While there has been some consideration 
f model selection for SBI, the field remains nascent. Brewer, P ́artay
 Cs ́anyi ( 2011 ) propose a technique based on dif fusi ve nested

ampling to compute the model evidence for ABC. Ho we ver, this
pproach is restricted to ABC, which as discussed abo v e can be
nefficient and of limited applicability, and is not straightforwardly 
eneralizable to modern neural density estimation approaches. 
In this article we introduce a methodology to compute the model 

vidence, in order to facilitate Bayesian model comparison, for mod- 
rn neural density estimation approaches to SBI. Our methodology 
everages the learned harmonic mean estimator (McEwen et al. 
021 ). We exploit the fact that the learned harmonic mean estimator
s agnostic to sampling strategy and only requires samples from the 
osterior distribution. In some neural density estimation approaches 
amples can be generated directly (e.g. by pushing samples from 

 simple base distribution, such as a Gaussian, forward through a 
ormalizing flow, Papamakarios et al. 2021 ). To support such neural 
ensity estimation approaches it is therefore essential that model 
vidence computation is decoupled from sampling strategy, as is the 
ase with the learned harmonic mean estimator. 

The remainder of this article is structured as follows. In Sections 2
nd 3 , we concisely re vie w, respecti vely, Bayesian model comparison 
nd neural density estimation approaches to SBI. In Section 4 , we
ntroduce our methodology to perform Bayesian model comparison 
n the context of SBI, leveraging the learned harmonic mean 
stimator (McEwen et al. 2021 ). We present algorithms to compute 
he Bayesian model evidence for each of the three main neural 
ensity estimation approaches to SBI that are re vie wed by Cranmer
t al. ( 2020 ). In Section 5 , we report the results from numerical
xperiments that demonstrate and validate our methodology . Finally , 
e conclude in Section 6 with a re vie w of our main findings. 

.  BAYESIA N  M O D E L  C O M PA R I S O N  

e re vie w here the fundamentals of Bayesian model comparison, 
ocusing on the challenges associated with estimation of the model 
vidence. For a more extensi ve re vie w we refer the reader to, e.g.
rotta ( 2008 ). We also summarize the key concepts underlying the

earned harmonic mean estimator since it is an integral component 
f this work (we refer the reader to McEwen et al. 2021 for further
etails). 
 https:// github.com/ justinalsing/ pydelfi
 https:// github.com/ undark-lab/ swyft

s

3

4

.1. Bayesian model evidence 

he definition of model evidence in a Bayesian statistical framework 
ollows directly from Bayes’ theorem. For a given model M ,
ayes’ theorem describes the connection between the conditional 
robabilities of model parameters θ and data d : 

 ( θ | d , M ) = 

p ( d | θ , M ) p ( θ | M ) 

p ( d | M ) 
, (1) 

here p( θ | d , M ) is the posterior distribution of the parameters,
iven the observed data d and the assumed model M , p( d | θ , M )
s the likelihood function of the data d given parameters θ and 
odel M , p( θ | M ) is the prior distribution of model parameters
for a given model M , and p( d | M ) is the model evidence, i.e.

he probability of data d for a given model M . The Bayesian
odel evidence is given by the normalization factor of the posterior

istribution p( θ | M , d ): 

 = p( d | M ) = 

∫ 

d θ p( d | θ , M ) p( θ | M ) . (2) 

Since the model evidence is a normalization factor for the posterior
istribution and is independent of the model parameters, the evidence 
s usually disregarded in parameter estimation tasks. Ho we ver, 
or model selection the evidence becomes the crucial quantity to 
ompute. Being the integral of the likelihood over the prior (cf.
quation 2 ), the evidence allows one to assign relative weights to
ifferent models. The evidence ratio between two competing models 
 1 and M 2 enters the expression for the comparison of their

osterior distributions, which again follows from Bayes’ theorem: 

p( M 1 | d ) 
p( M 2 | d ) = 

p ( d | M 1 ) p ( M 1 ) 

p ( d | M 2 ) p ( M 2 ) 
. (3) 

n many cases a priori probabilities p( M 1 ) and p( M 2 ) of the two
odels are considered to be equal, hence the ratio of posterior

istributions becomes equi v alent to the evidence ratio or Bayes factor 

 12 = 

p( d | M 1 ) 

p( d | M 2 ) 
= 

z 1 

z 2 
. (4) 

or notational brevity, henceforth we drop the explicit conditioning 
n models unless there are multiple models under consideration. 

.2. Algorithms for evidence estimation 

omputing the evidence for a given model is numerically challenging 
ue to the multidimensional integral in equation ( 2 ). Many techniques 
ave been proposed to tackle this challenge, such as thermodynamic 
ntegration (e.g. Beltr ́an et al. 2005 ; Gregory 2005 ; Bridges, Lasenby
 Hobson 2006 ), the Savage–Dickey density ratio (e.g. Trotta 2007 ),
ethods based on k th nearest-neighbour distances in parameter space 

Heavens et al. 2017 ), nested sampling (Skilling 2006 ), and others
see e.g. Friel & Wyse 2012 ; Llorente et al. 2023 ). 

Nested sampling reduces the computation of the evidence to the 
 v aluation of a one-dimensional integral, and as a byproduct provides
amples that can be used to compute posterior inferences, thus 
upporting both parameter estimation and model selection. Multi- 
odal nested sampling, implemented in the MULTINEST 3 software 

Feroz & Hobson 2008 ; Feroz et al. 2009 ; see also Buchner et al.
014 for the Python wrapper PYMULTINEST 4 ), has seen enormous 
uccess, with widespread application across multiple research fields, 
RASTAI 2, 710–722 (2023) 
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s has the slice sampling nested sampling algorithm implemented
n the POLYCHORD 

5 software (Handley et al. 2015a , b ). Proximal
ested sampling (Cai et al. 2022 ) is implemented in the PR O XNEST 6 

oftware, which has only been released very recently but is likely to
e particularly useful for inverse imaging problems. 
Measuring the model evidence is a numerical process that, if

epeated multiple times, produces a distribution of values. Ideally,
hese distributions would be narrow, and even more importantly they
hould provide unbiased estimates of the model e vidence. Ho we ver,
his might not al w ays be the case (Lemos et al. 2023 ). It is, therefore,
rucial to develop alternative ways to estimate the model evidence,
o as to perform cross-checks on the final model selection statements.
hroughout we use the terminology of an accurate estimator as one
ith a low bias and a precise estimator as one with a low variance. 

.3. Learned harmonic mean estimator 

he original harmonic mean estimator for computation of the
ayesian model evidence was first introduced by Newton & Raftery
 1994 ). From Bayes’ theorem it follows that the reciprocal evidence
s related to the harmonic mean of the likelihood by 

≡ E p( θ | d ) 

[
1 

p( d | θ ) 

]
= 

∫ 

d θ
1 

p( d | θ ) 
p( θ | d ) = 

1 

z 
. (5) 

his relation can be used to construct an estimator of the reciprocal
vidence 

ˆ = 

1 

N 

N ∑ 

i= 1 

1 

p( d | θ i ) 
, θ i ∼ p( θ | d ) , (6) 

sing N samples { θ i } N i= 1 of the posterior distribution p( θ | d ). How-
ver, this estimator may present very large or e ven di verging v ariance
Neal 1994 ). 

Gelfand & Dey ( 1994 ) proposed a modification to the original
armonic mean estimator, what we call the r etar geted harmonic
ean estimator , introducing a normalized target distribution ϕ( θ) to
efine the modified estimator 

ˆ = 

1 

N 

N ∑ 

i= 1 

ϕ( θ i ) 

p ( d | θ i ) p ( θ i ) 
, θ i ∼ p( θ | d ) , (7) 

rom which the original harmonic mean estimator is reco v ered for
( θ) = p( θ). 
The original harmonic mean estimator can be interpreted as

mportance sampling, where the importance sampling distribution is
he posterior and the target distribution is the prior. It is therefore not
urprising that the original estimator suffers poor variance properties
ince the prior is typically broader than the posterior, whereas
mportance sampling requires the sampling density to be broader
han the target. By introducing a new target ϕ( θ ) this issue can be
ircumv ented pro vided ϕ( θ ) is narrower than the posterior. Critically,
o we ver, the introduced target must be a normalized probability
istribution. 
The question remains: how does one set the target distribution? A

ariety of approaches have been considered pre viously, ho we ver none
av e pro v ed completely satisfactory. One approach is to consider a
ulti v ariate Gaussian (Chib 1995 ); ho we ver, such a target typically

as tails that are too broad. An alternative is to consider indicator
unctions (Robert & Wraith 2009 ; van Haasteren 2014 ); however, for
ASTAI 2, 710–722 (2023) 
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omplicated posterior distributions these typically capture a small
egion of parameter space only and so are inefficient. 

It was recognized by McEwen et al. ( 2021 ) that the optimal target
istribution is the normalized posterior 

 

optimal ( θ ) = 

p( d | θ ) p( θ) 

z 
. (8) 

hile this exact quantity is a priori inaccessible since it involves
nowledge of the evidence z – precisely the quantity we are
ttempting to estimate – an approximation of ϕ( θ) can be derived
rom posterior samples by machine learning techniques. This is the
ationale of the learned harmonic mean estimator of McEwen et al.
 2021 ). Moreo v er, the learned approximation of the posterior need
ot be highly accurate; but critically it must have narrower tails
han the posterior. Strategies to learn appropriate targets with these
roperties are presented in McEwen et al. ( 2021 ). In a nutshell,
hen learning models for ϕ( θ) a bespoke optimization problem

s considered that penalizes the variance of the resulting learned
armonic mean estimator, while ensuring it is unbiased, with possible
dditional regularization. This ef fecti vely ensures the tails of ϕ( θ )
re contained within the posterior. Thus, instead of learning a general
istribution that matches the posterior, a distribution that is ef fecti ve
or the subsequent evidence computation is learned. For further
etails see McEwen et al. ( 2021 ). Note that ϕ( θ ) can be trained simply
rom samples of the posterior and e v aluating the posterior density
s not strictly necessary. Ho we ver, it is necessary to e v aluate the
ormalized density of ϕ( θ) once it is trained. The learned harmonic
ean estimator is implemented in the HARMONIC 

7 software. 
We conclude this section by highlighting that the learned harmonic
ean estimator produces estimates of the evidence purely from

amples of the posterior distribution; there is no requirement on
he specific method used for sampling, i.e. HARMONIC is agnostic to
he method used to generate posterior samples. As we shall see later
n this work, this is the key property of the learned harmonic mean
stimator that allows it to be used in a variety of SBI scenarios. 

.  SIMULATION-BA SED  I N F E R E N C E  

e provide a brief overview of the main algorithms used for SBI,
eferring the reader to Cranmer et al. ( 2020 ) for a more e xtensiv e
e vie w. The focus of recent SBI developments and existing literature
s on parameter estimation, hence we discuss SBI in this context. In
ection 4 , we introduce methodologies to perform Bayesian model
omparison in an SBI setting. 

The original SBI methodology, based on ABC (see e.g. Beaumont
019 ), involves simulating realizations of the observables at each of
he explored points in parameter space, and accepting or rejecting
hese points based on their similarity with the observed data, within
 tolerance ε. This rejection sampling method reco v ers an accurate
epresentation of the underlying density distribution in the limit ε →
, at which point the low simulation efficiency makes computational
osts infeasibly high for inference of parameter spaces with even
oderate dimensionality . More recently , neural density estimation

echniques have been introduced to o v ercome this computational
imitation by increasing simulation efficiency. We focus the remain-
er of this article on neural density estimation approaches for SBI. 

In contrast to ABC, neural density estimation leverages deep neural
etworks to approximate conditional probability densities and is able
o speed up inference by orders of magnitude (Papamakarios &
 https:// github.com/ astro-informatics/ harmonic 
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urray 2016 ). Neural density estimation involves learning a con- 
itional density estimator q φ , parametrized by weights φ, to approxi- 
ate a target distribution (either the posterior distribution, the likeli- 

ood function or a density ratio proportional to the likelihood) from
 training set of N pairs of (typically) prior samples and simulations
 θ i , d i } N 1 = 1 . Provided the density estimator is suf ficiently expressi ve,
 φ will reco v er an accurate estimate of the target distribution in the
imit N → ∞ . 

Neural density estimation workflows have three main phases: 
imulation, training, and inference. The simulation phase generates 
he training pairs { θ i , d i } that are used in the training phase to tune
he weights of the neural network φ such that q φ approximates the 
arget density. In the inference phase, q φ is then conditioned on a
pecific observation d 0 and parameter inference is performed. 

Single runs of the simulation and training phases amortizes the 
raining of the density estimator, allowing offline inference to be run 
n multiple different observations, aptly named amortized neural 
ensity estimation . Ho we ver, we are often interested in inference on a
pecific observation d 0 . For this, amortized neural density estimation 
ends to be inefficient as generating training pairs for the density 
stimator across the entire prior parameter support includes many 
oints in parameter space with very low posterior density p( θ | d 0 ). 
To rectify this simulation inefficiency one can run sequential 

eural density estimation , where multiple rounds of simulation and 
raining are run sequentially to ensure there is a greater focus
n regions of high posterior density. This is done by generating 
imulations from an alternative prior proposal distribution ˜ p ( θ). This 
roposal distribution is iteratively updated between rounds such that 
or R rounds, the proposal posterior of the i th round ˜ p i ( θ | d 0 ) becomes
he proposal prior for the subsequent round ˜ p i+ 1 ( θ). This sequential 
pproach can further increase simulation efficiency by orders of 
agnitude compared with the amortized counterpart (Papamakarios 
 Murray 2016 ), at the expense of forgoing observation-agnostic 
exibility. Truncation schemes (Miller et al. 2020 , 2021 ; Deistler, 
oncalves & Macke 2022 ; Karchev, Trotta & Weniger 2022 ) also

ollow this sequential approach, by truncating the prior distribution 
t each sequential step in order to reduce the total number of
imulations. 

We briefly re vie w the three main approaches to neural density
stimation (Cranmer et al. 2020 ; see also Lueckmann et al. 2021 , for
 benchmark of the various algorithms). When referring to variants 
f these implementations we follow the nomenclature of Durkan, 
urray & Papamakarios ( 2020 ). 

.1. Neural posterior estimation 

eural posterior estimation (NPE) was first introduced by Papa- 
akarios & Murray ( 2016 ) and involves training a conditional 

ensity estimator to approximate the posterior density, such that 
q φ( θ | d ) → p( θ | d ), by minimizing the loss function 

 ( φ) = E p ( d | θ) p ( θ ) 

[−log q φ( θ | d ) ] . (9) 

For sequential NPE, iteratively updating the proposal distribution 
etween inference rounds results in the density estimator learning a 
roposal posterior density ˜ p ( θ | d ) that is related to the true posterior
ensity by 

˜  ( θ | d ) ∝ 

˜ p ( θ) 

p( θ) 
p( θ | d ) . (10) 

hree variants of NPE have been introduced to reco v er the true
osterior from the proposal posterior. 
The original NPE method (NPE-A, Papamakarios & Murray 2016 ) 
rains a mixture density network to target the posterior distribution. 
 post-hoc analytical correction is then applied to the resulting 
roposal posterior to reco v er an approximation of the true posterior
cf. equation 10 ). NPE-A considers Gaussian or Gaussian mixture 
roposal distributions so that the correction factor can be computed 
nalytically. 

To circumvent the requirement for analytical computation, Lueck- 
ann et al. ( 2017 ) propose a method (NPE-B) where the proposal

orrection is embedded as an importance weight in the loss function.
hilst more flexible than NPE-A, this method has been shown to

uffer poor performance as the importance weights in the loss func-
ion are susceptible to high variance, resulting in early termination 
f training. 
Finally, Greenberg, Nonnenmacher & Macke ( 2019 ) propose a 

PE method (NPE-C) that reparametrizes the problem to reco v er a
earned approximation q φ( θ | d ) of the true posterior from a density
stimator ˜ q φ( θ | d ) of the proposal posterior using a tractable sum
f discrete atomic proposals o v er the support of the true posterior.
his latter approach allows more flexibility in the choice of density
stimator, including cutting-edge normalizing flow models (Papa- 
akarios, Pavlakou & Murray 2017 ; Durkan et al. 2019 ). In our

ubsequent experiments we only consider this NPE method, which 
e simply refer to as NPE for the remainder of this article. 
NPE learns the posterior density directly, typically for a probabilis- 

ic model from which samples can be drawn directly. For example,
amples can be drawn directly from a Gaussian mixture density 
etwork or from a normalizing flow, where for the latter samples
re first drawn from a simple base distribution such as a Gaussian
nd pushed forward through the flow to yield samples of the target
istribution. Consequently, generating samples avoids the need for 
arkov chain Monte Carlo (MCMC) sampling and can be performed 

apidly and in parallel, significantly reducing computation time for 
nference. 

.2. Neural likelihood estimation 

eural likelihood estimation (NLE) was first introduced by Pa- 
amakarios, Sterratt & Murray ( 2019 ) and involves training a
onditional density estimator to approximate the likelihood function 
considering it as a probability distribution o v er the data), such that
 φ( d | θ) → p( d | θ ), by minimizing the loss function 

 ( φ) = E p ( d | θ) p ( θ ) 

[−log q φ( d | θ ) 
]
. (11) 

In contrast to NPE, sequential NLE can be implemented without 
 correction between ˜ q φ( d | θ ) and q φ( d | θ ). In principle, simulations
an be generated for any proposal distribution and, consequently, 
imulations from all sequential rounds, not just the latest, can be
sed when training (Papamakarios et al. 2019 ). 
This ability to seamlessly optimize simulation ef ficiency, ho we ver,

omes at the expense of requiring an external MCMC sampling 
tage to generate samples from the surrogate posterior q φ( d | θ ) p( θ)
or inference, which increases inference time and computational 
ost significantly relative to NPE, where samples can be generated 
irectly. 

.3. Neural ratio estimation 

eural ratio estimation (NRE) was first introduced by Hermans, 
egy & Louppe ( 2020 ) and involves approximating the posterior
ensity p( θ | d ) indirectly by learning a density ratio r φ( d , θ ) that is
roportional to the likelihood, where φ denotes the model weights. 
RASTAI 2, 710–722 (2023) 
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his is done by training a binary classifier to discriminate samples
rawn from the joint and marginal distributions of training pairs. The
lassifier then learns the ratio 

 φ( d , θ ) = 

p( d , θ ) 

p( d ) p( θ) 
= 

p( d | θ ) 

p( d ) 
= 

p( θ | d ) 
p( θ ) 

. (12) 

 further NRE variant was devised by Durkan et al. ( 2020 ). This
ariant extends the binary classifier to a multiclass one, hence we
dopt this variant for our numerical experiments and simply refer to
t as NRE for the remainder of this paper. 

Similarly to NLE, an additional MCMC sampling step can be
sed to generate samples from the surrogate posterior r φ( d , θ ) p( θ).
s with NLE, this increases inference time and computation cost

ignificantly relative to NPE. Alternatively, one can sample from the
rior when it is tractable and incoporate approximate importance
ampling weights (given by the ratio itself). 

.  BAY ESIAN  M O D E L  C O M PA R I S O N  F O R  SBI  

e discussed the importance and challenge of computing the model
vidence for Bayesian model selection in Section 2 , which is a
undamental component of many scientific analyses. Separately,
n Section 3 , we discussed three recent neural density estimation
echniques for parameter estimation in an SBI setting, which offer
reat promise for scientific analyses where the likelihood is often
ntractable or too costly to be e v aluated. In this section, we unify
hese two topics by introducing a methodology to compute the
ayesian model evidence in all of the three neural density estimation
pproaches. The evidence computation technique corresponding to
ach neural density estimation approach is represented schematically
n Fig. 1 . Our approaches support density estimation training phases
un in either an amortized or sequential setting. 

.1. Neural posterior estimation 

ur approach to compute the evidence for NPE is shown schemati-
ally in the left-hand panel of Fig. 1 . We use NPE to learn an approx-
mation q NPE 

ψ ( θ | d ) of the posterior, parametrized by network weights
 . This approach provides the ability to rapidly generate samples

irectly from the surrogate posterior, i.e. θ i 

direct ∼ q NPE 
ψ ( θ | d ). While

PE also provides the ability to e v aluate the surrogate normalized
osterior, the normalization constant itself, i.e. the model evidence,
s not accessible. To compute the model evidence we therefore
dopt the learned harmonic mean estimator, using the samples drawn
irectly from the surrogate posterior. For the learned harmonic mean
stimator it is also necessary to e v aluate the likelihood at sample
ositions (see equation 7 ), hence we adopt NLE to provide a surrogate
ikelihood. Using NLE we learn an approximation q NLE 

φ ( d | θ ) of the
ikelihood, parametrized by a separate set of network weights φ.

ith a set of posterior samples and the surrogate likelihood learned
y NLE to hand, we use the learned harmonic mean estimator to
btain an estimate of the reciprocal of the model evidence by 

ˆ = 

1 

N 

N ∑ 

i= 1 

ϕ( θ i ) 

q NLE 
φ ( d | θ i ) p( θ i ) 

, θ i 

direct ∼ q NPE 
ψ ( θ | d ) . (13) 

The proposed approach to compute the model evidence in the
PE setting does involve training two neural density estimators,
oth NPE and NLE. Ho we ver, it does not require any MCMC
ampling. Samples can be generated directly from the surrogate
osterior learned by NPE (e.g. by pushing samples from a simple
ase distribution such as a Gaussian through a normalizing flow),
hich is highly efficient and can also be computed in parallel. 
ASTAI 2, 710–722 (2023) 
Given trained NPE and NLE surrogate densities, an alternative
a ̈ıve technique can also be considered to estimate the model
vidence. F or an y model parameter θ the ratio of the unnormalized
urrogate posterior, formed from the surrogate likelihood and prior,
o the normalized surrogate posterior, i.e. 

q NLE 
φ ( d | θ ) p( θ) 

q NPE 
ψ ( θ | d ) , (14) 

rovides an estimate of the evidence. An estimate of the evidence
s thus reco v ered for a single parameter θ , which need not be
rawn from any particular distribution. Ho we ver, such an estimate of
he evidence will be incredibly noisy, i.e. will have an extremely
arge variance. Many parameters can be used to generate many
stimates of the evidence that can be av eraged. Nev ertheless, the
esulting estimate of the evidence remains highly noisy with a
ery large variance. This na ̈ıve estimator relies on the ratio of
wo approximate quantities, hence approximation errors compound.
ontrast this with the learned harmonic mean estimator. While our

earned harmonic mean approach does use NPE to learn a surrogate
osterior q NPE 

ψ ( θ | d ), the density is never evaluated. We only require
amples from the corresponding distribution. The learned harmonic
ean does require learning the importance target ϕ( θ ), and this is

ndeed learned to approximate the posterior, but the target need only
e normalized and have tighter tails than the true posterior p( θ | d )
it does not need to be an accurate approximation of the posterior.
onsequently, our proposed approach to compute the evidence in the
PE setting, based on the learned harmonic mean estimator, does
ot suffer compounding sources of error and thus provides increased
tability o v er the na ̈ıv e approach. 

While the focus of the current article is SBI, we also comment that
he ideas presented here can also be applied to accelerate evidence
omputation for likelihood-based inference. Crucially, throughout
ur approach to compute the evidence in the NPE setting, MCMC
ampling is not required. Posterior samples can be generated directly,
apidly and in parallel. If a likelihood is available this can simply be
ubstituted for the surrogate likelihood learned by NLE. Therefore in
he likelihood-based setting the approach can be altered to leverage
he speed of posterior sample generation of NPE, while adopting
he analytical likelihood function, to obtain a rapid estimate of the
eciprocal evidence without any further computation, as described by 

ˆ = 

1 

N 

N ∑ 

i= 1 

ϕ( θ i ) 

p ( d | θ i ) p ( θ i ) 
, θ i 

direct ∼ q NPE 
ψ ( θ | d ) . (15) 

learly in this setting NLE need not be performed. 

.2. Neural likelihood estimation 

ur approach to compute the evidence for NLE is shown schemat-
cally in the central panel of Fig. 1 . We use NLE to learn an
pproximation of the likelihood function q NLE 

φ ( d | θ ), parametrized
y network weights φ. As is typical for NLE, this approach requires
CMC sampling to generate samples from the unnormalized sur-

ogate posterior, i.e. θ i 

MCMC ∼ q NLE 
φ ( d | θ ) p( θ). NLE also provides the

bility to e v aluate the surrogate likelihood. With a set of posterior
amples and the surrogate likelihood learned by NLE to hand, we
se the learned harmonic mean estimator to compute an estimate of
he reciprocal of the model evidence by 

ˆ = 

1 

N 

N ∑ 

i= 1 

ϕ( θ i ) 

q NLE 
φ ( d | θ i ) p( θ i ) 

, θ i 

MCMC ∼ q NLE 
φ ( d | θ ) p( θ) . (16) 
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Figure 1. Schematic o v erview of three no v el techniques that we introduce to compute the evidence in SBI settings for neural posterior, likelihood, and ratio 
estimation methods (NPE, NLE, NRE, respectively). The top training blocks represent all phases of neural density estimation, where each block can be run in 
an amortized or sequential setting. 
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This proposed approach to compute the model evidence in the 
LE setting involves training only one neural density estimator, 
hich is decidedly more efficient than training two such estimators 

s required in the NPE and NRE settings (cf. Sections 4.1 and 4.3 ).
o we ver, it does require MCMC sampling to generate samples from

he unnormalized surrogate posterior which is required to compute 
he evidence using the learned harmonic mean estimator. 

With a trained NLE surrogate density q NLE 
φ ( d | θ i ) and the prior

( θ) to hand, alternative techniques that only require the likelihood 
unction and prior could also be considered to compute an estimate 
f the evidence. 

.3. Neural ratio estimation 

ur approach to compute the evidence for NRE is shown schemat- 
cally in the right-hand panel of Fig. 1 . We use NRE to indirectly
earn an approximation r NRE 

ψ ( d , θ ) p( θ) of the posterior, parametrized
y network weights ψ . Similarly to our NPE approach, the normal- 
zation constant of the surrogate posterior learned by NRE, i.e. the 
odel evidence, is not accessible. We therefore adopt the learned 

armonic mean estimator to compute the model evidence, for which 
t is also necessary to e v aluate the likelihood at sample positions (see
quation 7 ), hence we adopt NLE to provide a surrogate likelihood.
sing NLE we learn an approximation q NLE 

φ ( d | θ ) of the likelihood,
arametrized by network weights φ. With a set of posterior samples 
nd the surrogate likelihood learned by NLE to hand, we use 
he learned harmonic mean estimator to obtain an estimate of the 
eciprocal of the model evidence by 

ˆ = 

1 

N 

N ∑ 

i= 1 

ϕ( θ i ) 

q NLE 
φ ( d | θ i ) p( θ i ) 

, θ i 

MCMC ∼ r NRE 
ψ ( d , θ ) p( θ) . (17) 

The proposed approach to compute the model evidence in the NRE
etting does involve training two neural density estimators, both NRE 
nd NLE. Furthermore, external MCMC sampling is required abo v e
o generate samples from the trained NRE surrogate posterior. 

Alternativ ely, since NRE pro vides access to an approximation of
he normalized posterior by r NRE 

ψ ( d , θ ) p( θ), via importance sampling
ne could instead sample from the prior to a v oid the need for MCMC
ampling: 

ˆ = 

1 

N 

N ∑ 

i= 1 

r NRE 
ψ ( d , θ i ) ϕ( θ i ) 

q NLE 
φ ( d | θ i ) p( θ i ) 

, θ i 

direct ∼ p( θ) . (18) 

o we v er, the abo v e estimator involv es the ratio of two approximate
uantities and so approximation errors compound. Furthermore, one 
ould consider using the NRE approximation of the normalized 
osterior for the learned harmonic mean target distribution ϕ( θ): 

ˆ = 

1 

N 

N ∑ 

i= 1 

[
r NRE 
ψ ( d , θ i ) 

]2 

q NLE 
φ ( d | θ i ) 

, θ i 

direct ∼ p( θ) . (19) 

o we ver, such an estimator is also unlikely to be well-behaved since
e have not explicitly ensured the tails of ϕ( θ ) are narrower than the
osterior and it is a ratio of two approximate quantities, one of which
s squared, and so approximation errors compound. We therefore do 
ot consider these variants of the estimator further. 
An alternative way to compute the Bayes factor B 12 between two

ompeting models M 1 and M 2 , i.e. the ratio of model evidences
equation 4 ), in the NRE setting is to train an additional NRE model
s a binary classifier to discriminate samples from the joint and
arginal distribution of the two models, respectively. The classifier 

hen learns the ratio 

 ψ 12 
( d , θ ) = 

p( d , θ | M 1 ) 

p( d | M 2 ) p( θ | M 2 ) 
, (20) 

here ψ 12 denotes the network weights for a model trained in such
 manner. Following similar notation, the standard neural ratio for a
RASTAI 2, 710–722 (2023) 

art/rzad051_f1.eps


716 A. Spurio Mancini et al. 

R

s  

p  

f  

m

B

W  

b  

S  

i  

m  

s  

t

5

H  

d  

F  

t  

d  

p  

(  

a  

c  

n  

p  

v  

b  

t

5

T  

l  

a

d

T  

g  

m  

u  

f

p

W  

B

z

 

e  

c  

r  

8

o  

b  

v  

a  

e  

s  

t  

r  

e
 

p  

s  

o  

(  

e  

(  

s  

(  

2  

r  

i  

t  

M  

t  

w  

c  

C  

s  

m
 

a  

r  

t  

o  

s  

o  

l  

a  

e
 

s  

f  

a  

i  

r  

o  

t  

w  

o  

a  

2  

c  

N  

s
 

o  

i  

m  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/710/7382245 by guest on 03 M

ay 2025
ingle model, say model M 1 , can be denoted r ψ 11 
. While it is not

ossible to estimate the evidence of a single model directly, the Bayes
actor comparing the two models, which is the critical quantity for
odel comparison, can then be reco v ered by 

 12 = 

r ψ 12 
( d , θ ) 

r ψ 11 
( d , θ ) 

p( θ | M 2 ) 

p( θ | M 1 ) 
. (21) 

e understand this method is already known to the SBI community
ut were not able to locate any references discussing or applying it.
ince this approach does not lie within the family of methodologies

ntroduced in the current article, which leverage the learned harmonic
ean estimate to compute the model evidence from samples of the

urrogate posterior distribution, we leave the analysis of this approach
o further work. 

.  N U M E R I C A L  EXPERIMENTS  

ere, we present the results from our numerical experiments that
emonstrate and validate our SBI evidence calculation techniques.
or validation purposes, for each problem, we compare the value of

he evidence computed by our proposed approach (which we stress
oes not include any knowledge of the likelihood) to values com-
uted by likelihood-based approaches, either derived analytically
when possible) and/or computed numerically by likelihood-based
lgorithms (e.g. by HARMONIC , MULTINEST , and/or POLYCHORD ). Of
ourse in practical SBI settings, likelihood-based alternatives will
ot typically be av ailable. Ne vertheless, it is useful to consider
roblems here where the likelihood is available so that we can
 alidate our SBI e vidence computation techniques against likelihood-
ased alternatives. All of the SBI examples were implemented using
he SBI 8 software (Tejero-Cantero et al. 2020 ). 

.1. Linear Gaussian 

he first problem we consider is that of a simple simulator which
inearly adds Gaussian noise εi to the value of the parameters θ i , for
n arbitrary number of parameters i = 1, . . . N : 

 i = θi + εi , εi ∼ N (0 , 1) . (22) 

his is a standard test problem in the SBI software, which we trivially
eneralize to arbitrary dimension N . The Gaussian noise has zero
ean and unit variance, and for the model parameters we assume a

niform prior θi ∼ U[ −2 , 2] for each component i . The likelihood
or this model is Gaussian in the parameters θ = { θ1 , . . . θN } : 

( d | θ ) = 

1 

(2 π ) 3 / 2 
exp 

(
−

(
d − θ

)2 

2 

)
. (23) 

e assume an observation d 0 = (0 , 0 , 0). For this model the
ayesian evidence can be computed analytically: 

 = 

1 

4 N ( 2 π ) N/ 2 

∫ 2 

−2 
d θ1 . . . 

∫ 2 

−2 
d θN exp 

(
− θ2 

1 + · · · + θ2 
N 

2 

)

= 

[
erf 

(√ 

2 
)]N 

4 N 
. (24) 

Fig. 2 summarizes the results obtained from our model evidence
stimates for the linear Gaussian problem. We consider the three
ases N = { 3, 10, 20 } , shown in the upper, middle, and bottom panels,
espectiv ely, to inv estigate an y dependence of our evidence estimates
ASTAI 2, 710–722 (2023) 

 https:// github.com/ mackelab/ sbi 9
n the number of parameters considered. In all panels, the pink
ackground section shows results for likelihood-based methods for
alidation purposes, while results for SBI (likelihood-free) methods
re shown in the light brown re gion. F or all methods we repeat the
vidence estimation e x ercise 25 times to empirically describe the
tatistical distributions of the model e vidence estimates, sho wn by
he blue areas in each ‘violin’ of Fig. 2 . All of the evidence values
eported in Fig. 2 can be compared with the analytical value of
quation ( 24 ), o v erplotted by the red dashed line. 

Likelihood-based approaches include: (1) MULTINEST , which
roduces samples and evidence estimates, run with importance
ampling (Feroz et al. 2019 ), 1000 live points, efficiency sampling
f 0.3 and evidence tolerance of 0.01, resulting in ∼10 4 samples;
2) POLYCHORD , which also produces samples as well as evidence
stimates, run using 1000 live points, resulting in ∼10 4 samples;
3) HARMONIC , which produces evidence estimates from posterior
amples, thus we adopt the affine sampler of Goodman & Weare
 2010 ), implemented in the EMCEE 9 software (F oreman-Macke y et al.
013 ), to generate 10 5 post burn-in posterior samples from 100
andom w alk ers and adopt a hypersphere model for the learned
mportance target ϕ( θ ), with radius equal to the square root of
he number of parameters. The number of samples generated by

ULTINEST and POLYCHORD is dynamic, depending on, e.g. the
olerance parameter, whereas for EMCEE sampling for HARMONIC

e adopt a conserv ati v e, fix ed number of samples, since this is the
onfiguration we will also use when considering the SBI scenarios.
onsequently, the variances of the nested sampling approaches

hould not be compared directly to those of the learned harmonic
ean due to the differing number of samples. 
We analyse the performance of the estimators in terms of their bias

nd variance (also adopting the terminology accuracy and precision ,
espectively, as common in the astrophysical literature). All of the
hree likelihood-based methods provide unbiased average estimates
f the evidence. As mentioned, the variance of these estimators
hould not be directly compared due to the differences in the number
f samples (an analysis of the performance of nested sampling and
earned harmonic mean approaches would be interesting but here we
re focused on validating our proposed techniques to compute the
vidence for SBI scenarios). 

The results for the SBI methods are shown in the light brown
ection of the plot. We report results for NPE, NLE, and NRE, and
or each of them we provide an estimate using the amortized as well
s the sequential approach. For all methods we use 10 5 simulations
n the amortized approach, while in the sequential one we use 10
ounds with 10 4 simulations each, thus totalling the same number
f simulations for the two approaches. For each SBI method after
raining a density estimator (in an amortized or sequential fashion)
e collect a total of 10 5 posterior samples, either directly for NPE
r by MCMC sampling using 100 EMCEE random w alk ers for NLE
nd NRE. We train the HARMONIC importance target model using
0 per cent of the samples and use the remaining 80 per cent to
ompute the evidence. As explained in Sections 4.1 and 4.3 , NPE and
RE require an additional training of an NLE estimator to provide a

urrogate likelihood. 
All of the SBI evidence computation techniques provide estimates

f the evidence whose distribution captures the true analytic evidence
n the N = 3 and N = 20 cases, although there is a residual bias in
an y cases. Moreo v er, for N = 10, the NPE estimator distribution

oes not al w ays capture the true evidence. The fact that the estimates
 https:// github.com/ dfm/ emcee 

https://github.com/mackelab/sbi
https://github.com/dfm/emcee
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Figure 2. Model evidence values estimated with different likelihood-based and simulation-based (likelihood-free) methods for the linear Gaussian example 
described in Section 5.1 , whose analytical truth value is shown by the red dashed line. We consider three different dimensions, namely N = { 3, 10, 20 } , shown 
in the upper, middle, and bottom panel, respectiv ely. F or all methods we repeat the evidence estimation e x ercise 25 times to empirically describe the statistical 
distributions of the model evidence estimates, shown by the blue areas in each ‘violin’. The mean and one standard deviation error bars are illustrated in purple. 
The pink section of this plot shows likelihood-based results obtained with MULTINEST , POLYCHORD , and HARMONIC (the latter using samples from EMCEE ). Note 
that the variance of the evidence estimates obtained by these three methods in the likelihood-based setting should be compared directly due to differing numbers 
of samples (see Section 5.1 for a detailed discussion). The light brown section of the plot shows results for the simulation-based evidence pipelines summarized 
in Fig. 1 . These are all based on the use of HARMONIC to derive evidence estimates from posterior samples obtained with NPE, NLE, and NRE, in their amortized 
and sequential variants. 
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or dimension N = 20 – the more challenging setting – do encompass 
he true evidence suggests that these biases may be due to insufficient
raining of the underlying SBI models and/or their difficulty to 
cale to higher dimensions. The variances of the SBI estimates are 
enerally larger than the likelihood-based approaches, which is to 
e expected since in contrast to the likelihood-based setting we do 
ot include any knowledge of the likelihood. We also note that each
vidence estimate with an SBI method does include some training 
oise due to the fact that we repeat the training at every iteration.
he NLE approaches exhibit in general less bias than the NPE and
RE estimators. This may be due to the fact that the NLE approach

equires only a single neural density estimator (whereas the NPE 

nd NRE approaches require two), resulting in fewer sources of 
pproximation error. 

In Fig. 3 , we investigate the dependence of the evidence estimate
n the total number of simulations used in training the neural density
odels. We consider the case N = 3 and we report the results for the

mortized and sequential approach to NPE, NLE, and NRE, varying 
he number of simulations from 10 4 , to 10 5 , to 10 6 . We observe that
 m  
n all cases that as the number of simulations increases the evidence
stimates are less biased and the variances are reduced. This initial
nalysis suggests that evidence values can be computed accurately 
n SBI settings, although care should be taken to ensure a sufficient
umber of simulations are used. A more e xtensiv e analysis of the
ccuracy and precision of SBI approaches for evidence calculation 
ould be welcome, along the lines of the e xtensiv e and informative

tudy performed by Hermans et al. ( 2022 ). Ho we ver, such an analysis
equires substantial computational resources and is beyond the scope 
f this article, where we introduce these new methodologies. 

.2. Radiata pine 

he second problem we considered is one of the classic benchmark
xamples used to e v aluate techniques to estimate the model evidence
Friel & Wyse 2012 ; Enderlein 1961 ). We refer to McEwen et al.
 2021 ), who demonstrated the ef fecti veness of the learned harmonic
ean estimator for this example, for a more detailed presentation of
RASTAI 2, 710–722 (2023) 
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R

Figure 3. Dependence of the accuracy of the evidence estimates on the number of simulations used for training with simulation-based methods for the 
three-dimensional linear Gaussian example, whose analytical truth value is shown by the red dashed line. The mean and one standard deviation error bars are 
illustrated in purple. We report results for the amortized and sequential versions of NPE, NLE, and NRE. The evidence pipelines are summarized in Fig. 1 and 
are all based on the use of HARMONIC to deri ve e vidence estimates. In all cases as the number of simulations increases the evidence estimates are less biased 
and the variances are reduced. These results suggest that evidence values can be computed accurately in SBI settings, although care should be taken to ensure a 
sufficient number of simulations are used. 
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he problem: here we simply report the main points rele v ant to our
vidence estimation task. 

Our data set is comprised of measurements of Radiata pine trees
f the maximum compression strength parallel to the grain y i , for
 = 1. . . 42. The original scientific problem can be stated in terms
f two models: in Model 1 the density x i is assumed as a predictor
or y i , while in Model 2 the predictor is assumed to be the resin-
ASTAI 2, 710–722 (2023) 
djusted density z i . Both predictors are modelled with a Gaussian
inear regression model, for which the value of the evidence can be
erived analytically for each model. For brevity, we report results
nly for Model 1; calculations for Model 2 are identical (we did also
xperiment with this second model, finding excellent agreement with
he analytical estimates of the evidence). In Model 1, denoting with
¯ = 

1 ∑ 42 
i= 1 x i the average density across the trees specimens, the
n 
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aximum compression strength y i is given by 

 i = α + β( x i − x̄ ) + εi , εi ∼ N (0 , τ−1 ) . (25) 

he model parameters are { α, β, τ} , whose prior distributions are 

∼ N ( μα, ( r 0 τ ) −1 ) , β ∼ N ( μβ, ( s 0 τ ) −1 ) , τ ∼ Ga ( a 0 , b 0 ) , (26) 

ith ( μα , μβ , r 0 , s 0 , a 0 , b 0 ) = (3000, 185, 0.06, 6, 3, 2 × 300 2 ). The
vidence for this model can be computed analytically (cf. McEwen 
t al. 2021 , equation 104); the numerical value of its logarithm is
og z = −310.12829. 

Fig. 4 summarizes our findings for the Radiata pine example; 
he colour codes are the same as in Fig. 2 . We repeat the same
xperiments as in the linear Gaussian example, except this time 
or simplicity we do not attempt to calculate the evidence with 

ULTINEST or POLYCHORD (as this would require some effort to 
dapt the prior function for the Radiata pine model to be compatible
ith the uniform distribution on the unit cube required by these 
ested samplers). Therefore, for the likelihood-based case, we report 
nly numerical results obtained by applying HARMONIC to EMCEE 

amples, using a kernel density estimate for the learned harmonic 
ean estimator importance target, with radius 0.02 of the target 

istribution. As in the linear Gaussian example, we use 20 per cent
f 10 5 EMCEE posterior samples from 100 random w alk ers to train
ARMONIC , and compute an estimate of the evidence with the 
emaining 80 per cent . As we can see in the pink section of the
lot, this provides unbiased and tight estimates of the evidence. 
In the light brown background section of Fig. 4 we can compare

esults for SBI methods. The number of simulations we use to train
he density estimators in the various methods is the same as in the
aseline case for the linear Gaussian example, as is the number of
osterior samples used to train HARMONIC and derive evidence esti- 
ates. All of the SBI evidence pipelines provide reasonably accurate 

stimates of the evidence, with distribution ranges capturing the true 
nalytic evidence. The NPE and NRE approaches again exhibit some 
ias, which is nevertheless within the spread of the distribution of
alues. The NLE estimates again show good agreement with the 
eference values. 

.3. Gra vitational wa ves 

he final problem we consider is a simulated measurement of a 
ra vitational wa ve (GW) signal from a single interferometer. We 
onsider a merger between two black holes of mass M 1 = M 2 =
0 M �, following a similar numerical set-up to the one considered
y Jeffrey & Wandelt ( 2020 ). We compute the noiseless time series
f the strain signal using the PYCBC 

10 software (Biwer et al. 2019 ).
e only consider the ‘ + ’ polarization of the detector strain h + , ×.

he duration of the signal is ∼0.12 s, sampled at steps of duration
488 μs each. We rescale the signal by a multiplicative factor 10 21 in

rder to work with values O(1). For each point in parameter space,
ur simulated observable is a noisy GW form obtained by adding 
aussian noise with zero mean and standard deviation σ = 0.3 to 

he noiseless template from PYCBC . 
For this inference problem we vary the two black hole masses
 1 and M 2 , each one o v er a uniform prior U [ 10 , 30 ] M �. We

o not consider geometrical properties of the black holes such as
pin or inclination angle, similarly to Jeffrey & Wandelt ( 2020 ). As
oted by Hermans et al. ( 2022 ), who studied a similar GW SBI
roblem, such a simulated experimental set-up requires significant 
0 https:// github.com/ gwastro/ pycbc 

o  

t
N

omputational demand. Hence, for this example, we run only 10 
epetitions of each inference method to empirically describe the 
tatistical distribution of evidence estimates. These estimates mimic 
 realistic scenario within GW data analysis pipelines comparing 
odel evidences for two different numerical approximant models 

ssumed in the generation of the noiseless template waveforms. The 
rst of these two waveform models corresponds to the actual one used 

o generate the simulated observation, a reduced-order effective-one- 
ody model (SEOBNR, Taracchini et al. 2014 ), which we refer as the
ource model. The second model we consider is an inspiral-merger- 
ingdown phenomenological model (Hannam et al. 2014 ), which we 
efer to as the alternative model. For this configuration, we expect
o find the Bayes factors comparing models to fa v our the source
EOBNR model. We verify this numerically, taking advantage of 

his problem’s deliberately low-dimensional parameter space, which 
llows us to compute an estimate of the evidence for each model
sing direct numerical integration. We find the logarithm of the 
ayes factor computed by direct numerical integration to be ∼3.25, 

a v ouring the source model as anticipated. 
We run the inference pipeline in multiple likelihood-based con- 

exts, namely (1) obtaining samples and evidence estimates with 
OLYCHORD , using the same configuration for this method as the
ne described in Section 5.1 and (2) sampling the parameter space
ith EMCEE , collecting the same number of posterior samples as in
oth previous numerical examples, and using HARMONIC to obtain 
n estimate of the evidence, with a kernel density estimate for
he importance target distribution of radius 0.002 and 0.02 for the
ource and alternative models, respectively. Numerical results from 

hese likelihood-based methods are reported in the pink background 
ection of Fig. 5 , where we show violin plots for log-Bayes factors
omputed with POLYCHORD and HARMONIC . The distribution of log- 
ayes f actors al w ays f a v ours the true underlying source model and,
s in previous examples, we find strong agreement between each 
ikelihood-based approach. 

Numerical results from the SBI evidence estimates are shown 
n the light brown background section of Fig. 5 . The evidence
ipelines we consider are the same as described in Section 4 and
or each pipeline, the number of simulations used to train the density
stimators are the same as those used for the baseline linear Gaussian
nd Radiata pine examples in Sections 5.1 and 5.2 , for both amortized
nd sequential approaches. We also use the same number of posterior
amples to train HARMONIC and derive estimates of the evidence. 
e notice that all SBI methods produce log-Bayes factor estimates 

n general agreement with the likelihood-based ones, albeit with a 
omparati vely larger v ariance than presented in Figs 2 and 4 , due to
ompounding errors from the multiple evidence estimates required to 
btain Bayes factors (cf. equation 4 ). NLE produces more unbiased
stimates of the log-Bayes factors compared with NPE and NRE –
 similar trend to that observed in the linear Gaussian and Radiata
ine examples (cf. Figs 2 and 4 ). 

.  C O N C L U S I O N S  

n this article, we propose a no v el methodology to compute the
odel evidence for modern neural density estimation approaches 

o SBI using the learned harmonic mean estimator. Our approach 
everages the property of the learned harmonic mean estimator that 
t is decoupled from the sampling strategy and only requires samples
f the posterior. This allo ws us to de velop SBI model comparison
echniques for all three main neural density estimation approaches: 
PE, NLE, and NRE. 
RASTAI 2, 710–722 (2023) 
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R

Figure 4. Model evidence values estimated with different likelihood-based and simulation-based (likelihood-free) methods for the Radiata pine example 
described in Section 5.2 , whose analytical truth value is shown in red . Colour codes and labels are consistent with Fig. 2 . 

Figure 5. Logarithm of the Bayes factors between source and alternative waveform models estimated with different likelihood-based and simulation-based 
(likelihood-free) methods for the GW example described in Section 5.3 . Shown in red , an estimate of the true value of the logarithm of the Bayes factor was 
obtained using numerical integration. Colour codes and labels are consistent with Figs 2 and 4 . 
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We demonstrate and validate our SBI evidence calculation tech-
iques on a range of inference problems, using the learned harmonic
ean estimator as implemented in the HARMONIC software. We

alidate all SBI evidence estimator approaches, computed using
ARMONIC , against those computed by likelihood-based alternatives.
e find that HARMONIC produces values of the evidence that are

n excellent agreement with those computed by the likelihood-
ased nested sampling algorithms MULTINEST and POLYCHORD . Our
esults suggest that the learned harmonic mean estimator can be
eliably used as an alternative to nested sampling for evidence
stimation. 
ASTAI 2, 710–722 (2023) 
We also compare the different SBI evidence computation ap-
roaches that we propose and find that the NLE evidence estimation
pproach provides more accurate evidence estimates compared with
he NPE and NRE approaches. This result is particularly encouraging
or applications to cosmological scenarios, where it is very common
o perform SBI inference using the PYDELFI software, which indeed
mplements (sequential) NLE to sample the posterior distribution. 

Overall, our methodology and proof-of-concept analysis highlight
he potential of the learned harmonic mean estimator as an additional
ool for Bayesian model selection in SBI settings. Future research
ill focus on extending the applicability of HARMONIC to larger data
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nd parameter spaces, as well as on estimating the variance of the
stimators directly, folding in both sampling variance and neural 
ensity approximate error. Application to more realistic examples 
nd problems will be insightful, as well as a thorough analysis of
he accuracy and precision of the proposed approach; we advocate a 
uture study similar to Hermans et al. ( 2022 ) but focused on model
election. Our hope is that this article provides a first step towards
he computation of the Bayesian model evidence in SBI scenarios, 
n order to facilitate principled and robust Bayesian model selection. 
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