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ABSTRACT

Cosmic strings are linear topological defects that may have been produced during symmetry-
breaking phase transitions in the very early Universe. In an expanding Universe the existence of
causally separate regions prevents such symmetries from being broken uniformly, with a network of
cosmic string inevitably forming as a result. To faithfully generate observables of such processes re-
quires computationally expensive numerical simulations, which prohibits many types of analyses. We
propose a technique to instead rapidly emulate observables, thus circumventing simulation. Emula-
tion is a form of generative modelling, often built upon a machine learning backbone. End-to-end
emulation often fails due to high dimensionality and insufficient training data. Consequently, it is
common to instead emulate a latent representation from which observables may readily be synthe-
sised. Wavelet phase harmonics are an excellent latent representations for cosmological fields, both as
a summary statistic and for emulation, since they do not require training and are highly sensitive to
non-Gaussian information. Leveraging wavelet phase harmonics as a latent representation, we develop
techniques to emulate string induced CMB anisotropies over a 7.2◦ field of view, with sub-arcminute
resolution, in under a minute on a single GPU. Beyond generating high fidelity emulations, we pro-
vide a technique to ensure these observables are distributed correctly, providing a more representative
ensemble of samples. The statistics of our emulations are commensurate with those calculated on
comprehensive Nambu-Goto simulations. Our findings indicate these fast emulation approaches may
be suitable for wide use in, e.g., simulation based inference pipelines. We make our code available to
the community so that researchers may rapidly emulate cosmic string induced CMB anisotropies for
their own analysis. �
Keywords: Data Methods – methods: statistical – cosmology: miscellaneous – software: simulations

1. INTRODUCTION

Cosmic strings are linear topological defects produced
when the Universe undergoes certain symmetry-breaking
phase transitions, arising for example in a range of at-
tempts at Grand Unification; for reviews see Branden-
berger 1994; Vilenkin & Shellard 1994; Hindmarsh &
Kibble 1995; Copeland & Kibble 2009. In an expand-
ing Universe, the existence of causally separate regions
prevents the symmetry from being broken in the same
way throughout space, with a network of cosmic strings
inevitably forming as a result (Kibble 1976). Cosmic
strings are thus a well-motivated extension of the stan-
dard cosmological model and, while a string network can-
not be solely responsible for the observed anisotropies
of the cosmic microwave background (CMB) (since they
could not explain the acoustic peaks of the CMB power
spectrum; Pen et al. 1997), they could induce an impor-
tant subdominant contribution.
The amplitude of any CMB anisotropies induced by

cosmic strings is related to the string tension Gµ, where
G is Newton’s gravitational constant and µ is the energy

† E-mail: m.price.17@ucl.ac.uk

per unit length of the string. In turn, the energy scale
η of the string-inducing phase transition is directly re-
lated to µ by µ ∼ η2. Detecting signatures of cosmic
strings would therefore provide a direct probe of physics
of phase transitions in the early Universe at extremely
high energy scales. Consequently, there has been a great
deal of interest in constraining cosmic strings using ob-
servations of the CMB. In the majority of such analyses,
signatures of string observables must be simulated, which
is highly challenging.
Simulating accurate observable effects of a network of

cosmic strings is a rich and highly computationally de-
manding field of research (Albrecht & Turok 1989; Ben-
nett & Bouchet 1989, 1990; Allen & Shellard 1990; Hind-
marsh 1994; Bouchet et al. 1988; Vincent et al. 1998;
Moore et al. 2002; Landriau & Shellard 2003; Ringeval
et al. 2007; Fraisse et al. 2008; Landriau & Shellard 2011;
Blanco-Pillado et al. 2011; Ringeval & Bouchet 2012).
There is an ongoing disagreement between Nambu-Goto
(e.g. Ringeval & Bouchet 2012) and Abelian Higgs (e.g.
Hindmarsh et al. 2017) simulation models regarding the
decay of loops in string networks. In any case, in both
models large-scale numerical simulations are required to
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faithfully evolve string networks and simulate their ob-
servational effects. For example, the simulation of a sin-
gle full-sky Nambu-Goto string-induced CMB map at
sub-arcminute angular resolution can require in excess of
800,000 CPU hours, which is only possible by massively
parallel ray tracing through thousands of Nambu-Goto
string simulations (Ringeval & Bouchet 2012).
A variety of methods have been developed to search

for string-induced contributions to the CMB, including
power-spectrum constraints (Lizarraga et al. 2014a,b,
2016; Charnock et al. 2016), higher-order statistics such
as the bispectrum (Planck Collaboration XXV 2014;
Regan & Hindmarsh 2015) and trispectrum (Fergus-
son et al. 2010), and approaches such as edge detec-
tion (Lo & Wright 2005; Amsel et al. 2008; Stewart
& Brandenberger 2009; Danos & Brandenberger 2010),
Minkowski functionals (Gott et al. 1990; Ducout et al.
2013), wavelets and curvelets (Starck et al. 2004; Ham-
mond et al. 2009; Wiaux et al. 2010; Planck Collabora-
tion XXV 2014; Hergt et al. 2017; McEwen et al. 2017),
level crossings (Sadegh Movahed & Khosravi 2011), peak-
peak correlations (Movahed et al. 2013) and Bayesian in-
ference (McEwen et al. 2017; Ciuca & Hernández 2017).
More recently, machine learning techniques have also
been developed and shown great effectiveness (Ciuca
et al. 2019; Ciuca & Hernández 2019, 2020; Vafaei Sadr
et al. 2018; Torki et al. 2022). Due to the discrepancies
between string simulation models, current constraints on
the string tension depend on the model and simulation
technique adopted. We avoid surveying the various con-
straints that have been reported in the literature to date
and merely remark that typical constraints bound the
string tension by Gµ ≲ 10−7 (e.g. Planck Collaboration
XXV 2014).
A critical component of all approaches to search for

a cosmic string contribution in the CMB is the accu-
rate simulation of string-induced CMB anisotropies. The
massive computational cost of accurate string simula-
tions, irrespective of the string simulation model, limits
the effectiveness of cosmic string searches. This massive
computational cost is currently unavoidable if the string
network is to be accurately evolved and observables simu-
lated faithfully. Compounding this, since strings induce
significant contributions to CMB anisotropies at small
angular scales, observables must be simulated at high-
resolution. These limitations motivate alternative ma-
chine learning-based emulation techniques to generate
realisations of synthetic observables, without the pro-
hibitive computational overhead of full physical simu-
lations, which is the focus of this article. Emulation
is closely related to generative modelling and borrows
many of the core ideas; naturally, many emulation meth-
ods leverage modern machine learning models, e.g. vari-
ational auto-encoders (Kingma & Welling 2013).
While techniques to emulate cosmic string-induced

CMB anisotropies accurately do not exist currently, as
far as we are aware, approaches to emulate other cos-
mological fields, such as large-scale structure, have been
considered. Generative adversarial networks (Rodriguez
et al. 2018; Mustafa et al. 2019; Perraudin et al. 2021;
Feder et al. 2020) and variational auto-encoders (Chardin
et al. 2019) have found some success emulating density
fields directly (Piras et al. 2023). However, such end-to-
end approaches are limited to low to moderate dimen-

sions and require large volumes of training data. To
circumvent the issues of high dimensionality and large
volumes of training data, an alternative approach is to
emulate some latent representation from which observ-
ables may be readily synthesised. For example, it is com-
mon to first emulate a power spectrum, e.g through poly-
nomial regression (Jimenez et al. 2004; Fendt & Wan-
delt 2007), Gaussian processes (Heitmann et al. 2009;
Lawrence et al. 2010; Ramachandra et al. 2021; Eu-
clid Collaboration et al. 2021), or multilayer perceptrons
(Auld et al. 2008; Agarwal et al. 2012; Bevins et al.
2021; Spurio Mancini et al. 2022), from which Gaussian
realisations may trivially be generated. For the emu-
lation of string-induced anisotropies, which are highly
non-Gaussian, adopting the power spectrum as a latent
representation is not well-suited.
In this article we propose a technique to emulate CMB

anisotropies induced by networks of cosmic strings that
both eliminates the computational bottleneck and cap-
tures non-Gaussian structure. Our emulation technique
adopts the recently developed wavelet phase harmonics
(Mallat et al. 2020; Allys et al. 2020; Zhang & Mallat
2021; Brochard et al. 2022), a form of second genera-
tion scattering transform (Mallat 2012; Bruna & Mallat
2013), as a latent representation. Once a wavelet phase
harmonic representation is computed from a small en-
semble of physical simulations, our approach can then
be used to rapidly generate high-resolution realisations
of the cosmic string induced CMB anisotropies in under
a minute, starkly contrasting the computational cost of a
single simulation. Such an acceleration unlocks a variety
of analysis techniques, including but not limited to those
which necessitate the repeated synthesis of observables,
e.g. Bayesian inference which often relies on sampling.
In particular our approach is suitable for use in simula-
tion based inference (SBI) pipelines (Cranmer et al. 2020;
Spurio Mancini et al. 2022), where the likelihood is either
not available or too costly to be evaluated, and inference
relies solely on the ability to efficiently simulate or emu-
late observables. Such techniques are predicated on the
ability to generate observations that are not only realis-
tic but are also correctly distributed. In this article we
explore this second qualification as well, which is often
overlooked despite being critical for scientific studies.
The remainder of this article is structured as follows.

In Section 2 we provide an overview of generative mod-
elling within the context of cosmology. We then present
our approach for the rapid emulation of cosmic string
induced CMB anisotropies in Section 3, which we sub-
sequently validate in Section 4. Finally, we discuss the
impact of these results and draw conclusions in Section
5.

2. GENERATIVE MODELLING OF PHYSICAL
FIELDS

Generative modelling is a term broadly ascribed to the
generation of synthetic observables that approximate au-
thentic observables. Throughout the following discussion
we will refer to authentic observables by xTrue and syn-
thetic observables by xSyn, which can be either simulated
or emulated observables, denoted xSim and xEmu respec-
tively. A diverse range of generative models exist with
varying motivations, although many are motivated by
the manifold hypothesis (Bengio et al. 2013).
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Manifold Hypothesis: A given authentic observable
xTrue ∈ X , where X is the ambient space with dimen-
sionality dX , is hypothesised to live on a manifold S ⊆ X
with dimensionality dS ≤ dX , embedded within X .

Intuitively, this becomes apparent by considering nat-
ural images and making the following realisations. First,
images generated by uniformly randomly sampling each
pixel are extremely unlikely to be meaningful (Pope et al.
2021). Secondly, images are highly locally connected
through various transformations (e.g. contrast, bright-
ness), symmetries (e.g. translations, scaling), and diffeo-
morphisms (one-to-one invertible mappings, e.g. stretch-
ing). There is strong evidence to suggest the manifold
hypothesis is correct (Bengio et al. 2013), with algorith-
mic verification by Fefferman et al. (2016). In any case,
where additional flexibility is necessary a union of man-
ifolds hypothesis may be adopted with similar justifica-
tion (Brown et al. 2022).
For a complete description of the generative model one

must also characterise the data generating distribution
on this manifold, i.e. the likelihood with which any given
synthetic observable is to have been observed. In such
a case one may interpret S as a statistical manifold (see
e.g. Amari 2016; Nielsen 2020).

Statistical Manifold: A manifold S on which observ-
ables xTrue ∈ S live that is endowed with a probability
distribution PTrue.

Under the statistical manifold hypothesis the genera-
tive problem is two-fold: (i) how best to generate realistic
synthetic observables xSyn ∈ S, and (ii) how to ensure
the probability distribution PSyn of xSyn matches PTrue.
That is, how best to not only approximate the embed-
ded manifold but also the distribution over that mani-
fold. With machine learning techniques problem (i) can
often be satisfied, provided access to a sufficiently large
bank of data d. However problem (ii) is less straightfor-
ward to address and in many cases depends on the degree
to which the distribution of d traces PTrue. It should be
noted that, attempting to model both S and PTrue with
maximum-likelihood based methods can be pathological
when the ambient dimensionality of the space X is sig-
nificantly different to that of S (Dai & Wipf 2019). At
a high-level this effect, which is referred to as manifold
overfitting, occurs when the manifold S is learned but the
distribution over S is not (Loaiza-Ganem et al. 2022).
One way in which this pathology may be solved is by

first learning the data-distribution on a latent represen-
tation (equivalently a summary statistic) with low di-
mensionality (ideally equal to that of S) before decod-
ing to an approximation of the data-distribution. This
approach to learning the data distribution was first ex-
plored by Loaiza-Ganem et al. (2022), who show that if
the latent representation is a generalized autoencoder,
then the data-distribution on S may be recovered theo-
retically (see Loaiza-Ganem et al. 2022, Theorem 2). A
variety of other effective methods have been proposed to
handle this pathology (Arjovsky et al. 2017; Horvat &
Pfister 2021; Song & Ermon 2019; Song et al. 2020).
The importance of the above criteria when generating

natural images or physical fields differs greatly. In most
applications, it is sufficient to rapidly generate inexpen-
sive synthetic observables with high fidelity. For exam-

ple, in the large-scale generation of synthetic natural im-
ages or celebrity faces Rombach et al. (2022), matching
the correct data generating distribution PTrue is perhaps
less important. For scientific analysis, however it is typi-
cally necessary to generate synthetic observables that not
only live on or in the neighbourhood of S, but also are
approximately drawn from PTrue. An accurate approxi-
mation of the distribution on the manifold is critical for
use in, for example, simulation based inference pipelines.

2.1. Simulation

Many generative models have been developed for a
broad range of applications, however in this article we
will consider two categories: simulation and emulation.
From the perspective of a cosmologist, simulation entails
the time evolution of initial conditions, e.g. an initial
field x0, governed by cosmological parameters θ, to some
late-universe observables x. Such evolution is designed
to model the underlying physics of a universe from the
grandest to smallest scales, which can become incredi-
bly complex and non-linear (Hockney & Eastwood 2021).
Extracting information at higher angular resolutions is of
increasing importance as recent and forthcoming cosmo-
logical experiments probe smaller scales with greater sen-
sitivity. Simulating small-scale physics is therefore criti-
cal, necessitating high resolution simulations to faithfully
represent late-universe observables, which is highly com-
putationally demanding. Computationl hurdles aside, it
is important to note that, provided the core physics is
sufficiently captured, an ensemble of simulated observ-
ables will reliably trace PTrue, which is critical for subse-
quent analyses.

Simulation: A generative model which directly encodes
the dynamics of a physical system, evolving some initial
conditions over time to a late universe observable xSim.
The dynamics of a system are governed by parameters θ.

Such generative models are dependent only on an un-
derstanding of both the initial conditions, parameters θ,
and the underlying physics, and do not need to model
the statistical distribution of the data directly since it is
captured implicitly by the simulation process.

2.2. Emulation

One may instead emulate observations, circumventing
simulation entirely by approximating a mapping from
cosmological parameters θ to synthetic late-universe ob-
servables xEmu. Provided training data d = {θ,xTrue}
one may attempt to train a model to approximate this
mapping directly. End-to-end approaches are reliant on
a sufficiently large volume of training data, the amount
of which scales with both dimensionality and functional
complexity. Cosmology is fundamentally restricted to
synthetic training data, which can only be accurately
and reliably generated through computationally expen-
sive simulations. While generating small numbers of such
simulations is expensive but achievable (Nelson et al.
2019; Villaescusa-Navarro et al. 2020), generating large
ensembles of such simulations is often simply not feasible.
Consequently, to ameliorate these concerns it is com-

mon to instead emulate a compressed latent representa-
tion from which observables may readily be synthesised.
In the following we define a compression Φ : x 7→ z ∈ Z,
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where Z is of dimension dZ . Further, consider the setting
where we constrain the ratio r = dZ/dX < 1, such that
z is a potentially lossy compressed representation of x.
The objective is therefore to first approximate the latent
mapping Λ : θ 7→ zEmu from which observables may be
synthesised by taking into consideration the latent com-
pression zEmu = Φ(xEmu). To learn an approximation of
Λ requires less training data due to the reduction in di-
mensionality. Hence, a trade-off between the complexity
of Λ and Φ exists and so one can balance between data
requirements and the information lost during compres-
sion. As the compression ratio r decreases, i.e. greater
compression, the data requirements diminish, however
conversely the compression loss is likely to increase.
Popular summary statistics such as the power-

spectrum are emulated in this manner, from which Gaus-
sian realisations may be generated trivially (see e.g. Auld
et al. 2008; Agarwal et al. 2012; Bevins et al. 2021; Spu-
rio Mancini et al. 2022). However, the power spectrum is
a particularly ill-suited latent representation for the syn-
thesis of cosmic string induced CMB anisotropies, which
are highly non-Gaussian in nature. Hypothetically,
one could adopt a variational auto-encoder (Kingma &
Welling 2013) as an effective latent representation; in fact
Loaiza-Ganem et al. (2022) have recently had some suc-
cess in this regard. It is reasonable to presume such an
approach would be sensitive to non-Gaussian informa-
tion, however for aforementioned reasons gathering suf-
ficient training data is infeasible. This dichotomy there-
fore motivates the development of latent representations
that are sensitive to non-Gaussian information and do
not require substantial training data.

Latent emulation: A two-step generative model, in-
cluding a mapping Λ from cosmological parameters θ
to latent variables zEmu, from which observables xEmu are
synthesised given knowledge of the compression mapping
Φ that maps from observables to the latent space, i.e.
zEmu = Φ(xEmu).

The reduced dimensionality of zEmu alleviates train-
ing data requirements, introducing a trade-off between
the complexity of the mapping and the compression loss,
which can effect the quality of synthesis. Since Φ need
only be surjective (onto), there typically exists some vari-
ability in synthetic observables, as potentially many ob-
servables correspond to a single latent vector. However,
this implicit variability is by no means guaranteed to
match the data generating distribution PTrue on S. One
should note that in the setting of Loaiza-Ganem et al.
(2022), where Φ is a generalized autoencoder, provided
dZ = dS , and the distribution on Z is sufficiently cap-
tured, the induced distribution PSyn recovers PTrue to a
good approximation. Such an approach is appropriate
for computer vision tasks, where data is far from a lim-
iting factor. However, for cosmological applications in-
sufficient data is available to learn such latent represen-
tations, motivating the adoption of designed representa-
tions, e.g. wavelet-based representations.

2.3. Wavelet Phase Harmonics

The wavelet phase harmonics (WPH) are a form of sec-
ond generation scattering transform (Mallat 2012; Allys
et al. 2019; Mallat et al. 2020) which can be directly con-
trasted with convolutional neural networks. For WPHs

filters are defined by wavelets rather than learned in a
data-driven manner. Drawing inspiration again from ma-
chine learning, once a signal of interest has been con-
volved with the wavelet of a given scale, point-wise non-
linearities are applied through the phase harmonic opera-
tor w 7→ [w]p = |w| ·eiparg(w), which is simply a rotation
of some complex vector w. As such, rotations induce
magnitude and scale independent non-linearities, hence
spatial information may be synchronised across scales,
from which moments (covariances between distinct con-
volutions) are computed. Consequently WPH provide
a latent representation particularly well suited for spa-
tially homogeneous images, e.g. textures (Zhang & Mal-
lat 2021). Furthermore, WPH can be shown to be highly
sensitive to non-Gaussian information (Portilla & Simon-
celli 2000), making them ideal latent representations for
cosmic string induced CMB anisotropies.
WPH and their predecessors, the first generation

wavelet scattering transform, have successfully been ap-
plied to probe weak gravitational lensing (Cheng et al.
2020; Cheng & Ménard 2021; Valogiannis & Dvorkin
2022; Eickenberg et al. 2022), the removal of non-
Gaussian foreground contaminants (Allys et al. 2019;
Regaldo-Saint Blancard et al. 2020, 2021; Jeffrey et al.
2022), classifcation of magnetohydrodynamical simula-
tions (Saydjari et al. 2021), and exploration of the epoch
of reionisation (Greig et al. 2022; Lin et al. 2022). Many
of these applications have adopted the WPH as a latent
representation from which realistic observables have been
emulated. However, as far as we are aware, to date little
consideration has been given to the probability distribu-
tion of such observables (see Section 2).
There are two distinct way to construct maximum

entropy generative models, these being the micro- and
macro-canonical approaches, which relate to the asso-
ciate ensembles in statistical physics. We have discussed
the micro-canonical case, wherein new realizations which
have the same latent representation are iteratively gen-
erated, and provided an arguement to why such an ap-
proach can result in limited variability. In contrast to
this, the macro-canonical case consists in explicitly con-
structing a probability distribution for which the WPH
are not fixed. This probability distribution can in turn
be related to the physical Hamitonian of the process un-
der study, however the difficulty is then how one samples
from this ensemble (Marchand et al. 2022).

3. FAST EMULATION OF COSMIC STRING
INDUCED ANISOTROPIES

Having outlined both generative modelling and latent
emulation in the context of physical fields, we next de-
scribe how these concepts can be leveraged to rapidly
generate realisations of late-universe cosmic string in-
duced anisotropies in the CMB.
First let us explicitly formulate our emulation problem

following the notation of Section 2.2. We seek to emu-
late late-universe string induced anisotropies xEmu from
cosmological parameters θ. Fortunately, in the case of
cosmic string induced CMB anisotropies there is only
a single parameter θ = Gµ, the string tension (Kibble
1976). Moreover, the observed anisotropies transform
trivially under µ → µ′, specifically this transformation
is simply a scaling xEmu → (µ′/µ)xEmu. Therefore, pro-
vided one is able to generate emulated observables for
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x0 ∼ N (0, IdX )zSim = Φ(xSim)

Compute latent vector.

xEmu = argmin
{
∥Φ(x)− zSim∥22

}
x

Solve using automatic differentiation.

Fig. 1.— An overview of the process by which a small ensemble of simulated observations can be extremely augmented with emulated
observations for arbitrary string tension Gµ. In step 1 (compression) we simply draw a uniform random simulation xSim from which a
reference latent vector zSim is calculated. In step 2 (synthesis) we take a random Gaussian realisation x0 and, using automatic differentiation
of the compression mapping Φ to iteratively minimise a standard ℓ2-loss function, recovering solutions xEmu such that Φ(xEmu) = zSim.
Steps 1 and 2 can straightforwardly be repeated many times, generating an ensemble of emulated maps which can be (potentially much)
larger than the small collection of simulated observables. In this way this approach may be thought of as extreme data augmentation.

a single string tension, it is straightforward to generate
them for all string tensions. As such, in the following we
simplify to a single fixed µ from which all µ′ ̸= µ can
readily be generated a posteriori.
We consider how to robustly synthesise string induced

anisotropies xEmu from their WPH representation zEmu.
More formally, for a given reference latent vector zEmu,
which we condition on, we efficiently synthesise observa-
tions xEmu which satisfy Φ(xEmu) = zEmu. Additionally,
we provide a strategy by which ensembles of such emu-
lated observables can, at least approximately, be shown
to be distributed appropriately, i.e. PEmu ≈ PTrue. To
this end we leverage a small set of simulated observables
xSim as a trellis, upon which our emulation process grows.
Throughout this work we will adopt WPHs as our

compressed latent representation Φ (Mallat et al. 2020),
which is highly sensitive to non-Gaussian information
(Portilla & Simoncelli 2000), is numerically efficient to
evaluate, and does not require training data since it
adopts designed rather than learned filters. We make
use of the GPU-accelerated PyTorch package PyWPH �1

which implements the transform discussed in Regaldo-
Saint Blancard et al. (2021), and by default adopts bump
steerable wavelets (Mallat et al. 2020).

3.1. Generating String Induced Anisotropies

In the following we work under the assumption that
a (potentially very) limit number of simulated observ-
ables are available, from which we will generate arbi-
trarily many synthetic observables. Offline, we apply Φ
to compress this training set into latent vectors that we
condition on during synthesis. We then iteratively em-
ulate many observations xEmu such that Φ(xEmu) ≈ zSim

through gradient-based algorithms given an appropriate
loss surface. Here we chose to minimise the standard Eu-
clidean ℓ2-loss L(x) = ∥Φ(x) − zSim∥22. To achieve this
in practice requires software to calculate both the com-
pression Φ and necessary gradients, both of which are
straightforwardly provided by PyWPH. An iterative ap-
proach, such as the one presented here, has also been
adopted to successfully emulate a variety of cosmological
signals, from density fields (Allys et al. 2019, 2020) to
foreground contaminants (Regaldo-Saint Blancard et al.

1 https://github.com/bregaldo/pywph

2021; Jeffrey et al. 2022).
For our current work we match the latent represen-

tation by maximum-likelihood estimation. One may in-
stead perform maximum-a-posteriori estimation by en-
forcing regularity constraints. For example, cosmic string
networks are close to piece-wise constant, hence emu-
lation of their induced anisotropies may benefit from a
total-variation norm regularisation (gradient sparsity),
however we leave this exploration to a later date.
In this work we use the L-BFGS algorithm to minimise

the loss function, which is a variant of the quasi-Newton
method BFGS (Byrd et al. 1995) and typically require
at most 100 iterations to converge to a solution xEmu for
which the loss functions is below an acceptable tolerance.
Visually, we confirm that these solutions xEmu display
similar characteristics to those generated through com-
prehensive simulations, indicating that they live on, or
in the neighbourhood of, the embedded manifold S. In
many cases generating visually realistic synthetic observ-
ables alone is sufficient, e.g. for natural images. How-
ever, to leverage these techniques for scientific inference it
is important to ensure an ensemble of synthetic observ-
ables are distributed according to the data generating
distribution PTrue.

3.2. Matching the Probability Distribution

Suppose a single simulation is available, from which m
synthetic observables {xEmu}m may readily be emulated.
From the surjectivity of Φ our emulated set of observables
will exhibit some degree of variability, however this dis-
tribution is by no means guaranteed to match the true
underlying data-generating distribution. In fact this is
highly unlikely.
Were one to evaluate the expectation E[·] of a sum-

mary statistic of interest Ω over these m emulated ob-
servables they are likely to approximate the point statis-
tics of the single simulation, but may not match the sum-
mary statistics averaged over an ensemble of n simula-
tions {xSim}n. This is to say that although our ensemble
of emulated realisations sufficiently match a single simu-
lation, they do not correctly characterise an ensemble of
simulations E[{Ω(xEmu)}m] ̸= E[{Ω(xSim}n)]. Therefore
such emulations are likely to bias any subsequent sta-
tistical analysis. An analogous argument may be made
torward Var[{Ω(·)}m] and other higher order descriptors.

https://github.com/bregaldo/pywph
https://github.com/bregaldo/pywph
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Algorithm 1 Emulation of cosmic string signatures

First take our small set of m simulations {xSim}m and
compute their latent vectors, which we will condition
on during synthesis.

procedure Generate Latent Ensemble(Φ, {xSim}m)
for i ∈ [0,m) do

zSim = Φ(xSim)

return {zSim}m
Draw a uniform random reference latent vector zSim

upon which we will condition. Starting from white
noise, use automatic differentiation to find xEmu such
that Φ(xEmu) ≈ zSim.

procedure Emulate Field(µ,Φ, {zSim}m)
x ∼ N (0, IdX ) ▷ Random initial field
zSim = {zSim}j∼U{0,m−1} ▷ Draw latent vector
function Loss Function(Φ,x, zSim)

L = ∥Φ(x)− zSim∥22
return L, ∂L

∂x ▷ Return loss and gradient.

xEmu = L-BFGS-B(Loss Function,x, zSim)
return GµxEmu ▷ Rescale to string tension µ

The solution we propose is to instead work with a
small training ensemble of simulated observables, which
more adequately represent the data-generating distribu-
tion. During subsequent statistical analysis whenever ob-
servables are required, a random latent representation is
uniformly drawn from this training set and used to gen-
erate xEmu through the method outlined in Section 3.1.
In this way one may reasonably expect to find that

the statistics computed from a set of emulated observ-
ables should match those computed on a set of simu-
lated observables. That is to say that E[{Ω(xEmu)}m] ≈
E[{Ω(xSim)}n], provided n and m are each sufficiently
large. Increasing the amount of training data will im-
prove the reliability and accuracy with which the dis-
tribution of our limited ensemble of training simulations
matches the underlying data-generating distribution, im-
proving the degree to which emulated observables are
approximately drawn from the true data generating dis-
tribution xEmu ∼ PTrue.
To summarise this approach makes the following as-

sertion: the distribution over observables upon which we
condition during emulation is transferred to the distribu-
tion of our emulated observables. Some augmentation is
applied to this distribution, as there is some variability
during synthesis, but typically this is a comparatively
small effect. Hence, using a small training set of sim-
ulated observables provides a straightforward means by
which the distribution of emulated observables can be
made substantially more realistic.

Emulation as Augmentation: Our approach may be
considered extreme data augmentation, wherein latent
emulation bridges the gap between the number of simula-
tions necessary for inference and those which may feasi-
bly be generated. The limited span of our small ensemble
of simulations is enhanced by the variability (expressiv-

ity) induced by the surjectivity of Φ.

Alternatively, one may attempt to enhance the vari-
ability of synthetic observables by modelling a proba-
bility measure on the latent representation directly, as
was promoted by Loaiza-Ganem et al. (2022). In the
case where Φ is a generalized autoencoder the compres-
sive mapping is injective and learned. However, when
Φ is given by the WPHs it is not at all obvious which
distribution over latent variables corresponds with PTrue.
There are several approaches one may wish to consider
however we leave this for future work (see e.g. De Bortoli
et al. 2022).

3.3. Algorithm and Computational Efficiency

Our approach involves three primary steps: (1) A small
training set of latent vectors is computed from simula-
tions once; (2) A random latent vector zSim is drawn from
this ensemble; and (3) the loss discussed in Section 3.1 is
minimised to generate an emulated observable such that
Φ(xEmu) ≈ zSim. These steps are outlined in Algorithm
1 and Figure 1, and are implemented in code which we
make publicly available. �2

We benchmarked the computational overhead for our
approach on a single dedicated NVIDIA A100 Tensor
Core GPU with 40GB of device memory. Compiling the
PyWPH kernel, our compression Φ, for 1024× 1024 im-
ages takes ∼ 11s on average and occupies ∼ 27GB of the
available onboard memory; indicating the PyWPH soft-
ware is fast but not yet memory efficient. It should be
noted that we adopt default configuration of all PyW-
PHv1.0 hyper-parameters, and that subsequent PyWPH
releases demonstrate further acceleration. Synthesis of
a single string induced anisotropies takes 100 L-BFGS
iterations with a wall-time of O(100s). In practice, the
quality of synthetic observations degrades only slightly
if the optimiser is run for significantly fewer iterations,
and so the wall-time can easily be reduced to less than
a minute. As a baseline; a single flat-sky Nambu-Goto
simulation at this resolution takes more than a day of
wall-time, and a full-sky simulation can take in excess of
800,000 CPU hours.

4. VALIDATION EXPERIMENTS

To demonstrate the efficacy of the emulation process
discussed at length in Section 3 and summarised in Al-
gorithm 1, we generate a set of synthetic cosmic string
induced CMB anisotropies, the summary statistics of
which are validated against those computed over an en-
semble of state-of-the-art Nambu-Goto string simula-
tions.

4.1. Nambu-Goto String Simulations

Due to the multiscale nature of wavelets, string in-
duced CMB anisotropies may be emulated for a wide
variety of string models, given a field simulation. In this
analysis we adopt the Nambu-Goto string simulations
of Fraisse et al. (2008), although in principle alternative
string simulations could be considered.
These Nambu-Goto string induced anisotropies are

convolved with a 1 arcminute observational beam in line

2 https://github.com/astro-informatics/stringgen

https://github.com/astro-informatics/stringgen
https://github.com/astro-informatics/stringgen
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Fig. 2.— Left: A gallery of simulated Nambu-Goto cosmic string induced CMB anisotropies randomly sampled from an ensemble of 1000
of such images. Each of these simulations can take in excess of a day to compute. Right: A gallery of emulated string induced anisotropies,
each of which take on average under a minute to generate, and are statistically indistinguishable from their simulated counterparts displayed
on the left. These synthetic string induced anisotropies are emulated using the methods presented in this article.

with current ground based observations, such as the Ata-
cama Cosmology Telescope (Louis et al. 2014) and South
Pole Telescope (Chown et al. 2018). It is important to
note that these simulated flat-sky maps are generated
using discrete Fourier transforms and that the genuine
cosmic string power spectrum goes as ∼ 1/k. Therefore,
these simulations introduce substantial aliasing at small
scales. Such beam convolutions mitigate aliasing by re-
moving any excess power at high frequencies. In total,
we have 1000 state-of-the-art Nambu-Goto string maps,
each of dimension 1024× 1024, covering a 7.202◦ field of
view at sub-arcminute resolution.

4.2. Methodology

We partition the 1000 available 1024 × 1024 Nambu-
Goto string simulations into training and validation
datasets, with 300 and 700 simulations respectively. For
each simulation we compute the associated WPH rep-
resentation, which we store for subsequent use. Note
that we adopt the machine learning nomenclature for
consistency, though training is not necessary since we
adopt WPHs as our compression Φ, which provide a de-
signed rather than learned latent representation space.
Following the method outlined in Algorithm 1, we gen-
erate 700 emulated string induced anisotropies, each time
uniformly randomly sampling a set of WPH coefficients
zSim from the training set. Finally, we compute summary
statistics over our emulated CMB anisotropies, which
we validate against those computed over the validation
dataset.

4.3. Validation

A gallery of randomly selected simulated and emulated
string induced anisotropies can be seen in Figure 2; the
statistical properties of these maps appear very similar
to the eye. Though it is necessary that emulated observ-
ables xEmu are of high fidelity, one must further ensure
that an ensemble of such observables correctly charac-
terise authentic CMB anisotropies. That is, emulated
observables for scientific applications must be both of
high fidelity and appropriate variability. This duality is
discussed in Section 2. One must ensure that xEmu are,
at least approximately, distributed according to the data
generating distribution PTrue. If this second condition is
not satisfied, although one may recover individual maps
which appear reasonable, the aggregate statistics of such
maps will likely be incorrect.
Two näıve approaches can help elucidate this point.

Suppose one selects a single latent vector zSim from
which many synthetic observables are generated. We ex-
plored this and indeed find that the statistics of these
anisotropies highly concentrate around the point statis-
tics associated with our chosen latent vector zSim and do
not fully capture PTrue. Suppose instead one attempts to
ameliorate this by constructing an averaged latent rep-
resentation E[{zSim}k] over k training simulations, from
which many synthetic observables are generated. Again,
we explored this and find that the statistics highly con-
centrated around the mean latent vector and do not re-
motely capture PTrue. However, it should be noted that
cosmic string induced anistropies exhibit structure which
is particularly difficult to model, so it may be that such
approaches are sufficient for other applications.
To ensure we capture PTrue sufficiently to support the
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Fig. 3.— Summary statistics considered for the validation of the emulation techniques presented in this article. Each panel displays the

mean of a summary statistic (line) and its variance (1σ, shaded), for 700 simulated (red, solid) and emulated (blue, dashed) string induced
CMB anisotropies. At the bottom of each plot the difference between simulated and emulated anisotropies, in units of σ, is presented.
(a) Standard power-spectrum, for which simulated and emulated statitsics are consistent. (b) Bispectrum, with a flattented triangle
configuration, for which both simulation and emulation are statistically indistinguishable. (c) Histogram of pixel intensitites, which are
again extremely consistent. (d-f) These sub-figures display the three Minkowski functionals which are, from left to right, sensitive to
the area, boundary, and Euler characteristic respectively. For both V0 and V2 simulation and emulation are highly consitent. However,
a ∼ 2σ discrepency can be seen for V1 around δT/T/Gµ ≈ 0. This exaggerated peak around 0 is likely due to low-intensity oscillations
introduced from the extended support of bump steerable wavelets adopted in the PyWPH package. This effect could be mitigated by the
use of alternative wavelets that are better localized in the spatial domain (which is beyond the scope of the current work). Nevertheless
these summary statistics are overall in very good agreement.
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use of synthesised observations for scientific inference,
we adopt the method outlined in Section 3. We validate
these synthetic cosmic string induced CMB anisotropies
on a range of popular summary statistics that are sen-
stive to both Gaussian and non-Gaussian information
content. Specifically we consider the power spectrum
(Lizarraga et al. 2014a,b, 2016; Charnock et al. 2016),
squeezed bispectrum (Planck Collaboration XXV 2014;
Regan & Hindmarsh 2015), Minkowski functionals (Gott
et al. 1990), and higher order statistical moments.
Looking to Figure 3, the power spectrum (Figure

3a), bispectrum with flattened triangle configuration
B(k, k, k/2) (Figure 3b), and the distribution of pixel in-
tensities (Figure 3c) are matched to well within 1σ (grey
region). The variance of these statistics accurately mir-
rors those computed on simulations indicating a similar
degree of variability, which is encouraging.
The Minkowski functionals (Mecke et al. 1993) of a

d-dimensional space are a set of d+ 1 functions that de-
scribe the morphological features of random fields. For
2-dimensional cosmic string maps d = 2 and hence there
exist three Minkowski functionals V0,1,2 which are sen-
sitive to the area, boundary, and Euler characteristic of
the excursion set respectively (an excursion set is sim-
ply the sub-set of pixels which are above some thresh-
old magnitude). Looking again to Figure 3, we can see
that V0 is recovered near perfectly (Figure 3d) and V2

is recovered to ∼ 1σ (Figure 3f), however V1 is accurate
away from δT/T/Gµ ≈ 0 but exhibits a ∼ 2σ differ-
ence for δT/T/Gµ ≈ 0 (Figure 3e). Given that bump
steerable wavelets do not have compact support in pixel-
space (Allys et al. 2020), which can induce low-intensity
extended oscillations, it is unsurprising that the error in
V1 is largest around δT/T/Gµ ≈ 0. An alternative fam-
ily of wavelets could be considered with more compact
support or, as mentioned in Section 3.1, total variation
regularisation could be imposed to induce an inductive
bias against such low-intensity oscillations. In fact, pre-
cisely such wavelet dictionaries have been developed on
the sphere (Baldi et al. 2009; McEwen et al. 2018), how-
ever we leave exploration in this direction to future work.
Finally, in Figure 4 we consider a histogram of recov-

ered skewness and kurtosis. It should be noted that the
kurtosis in particular can be difficult to match, due to
a high sensitivity to the tails of a distribution, which
are often difficult to capture sufficiently (see e.g. Feeney
et al. 2014). Nevertheless, we capture the distribution of
both the skewness and kurtosis well.
In summary, although we find a moderate discrepency

for one statistic (the second Minkowski functional)
around a single threshold (which could likely be mit-
igated in future by adopting different wavelets in the
WPH representation, or subsequent evolutions thereof),
all other statistics are excellently matched, both in terms
of bias and relative variability.

5. CONCLUSIONS

In this article we consider generative modelling, high-
lighting the differences between its application to nat-
ural images and for physics. In contrast to typical use-
cases for natural images, in physics it is important to not
only generate realistic emulations but to also faithfully
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Fig. 4.— Histograms of the skewness and kurtosis respectively,
generated from 700 instances of simulated and emulated Nambu-
Goto cosmic string induced CMB anisotropies. We find an excel-
lent agreement between the sets of emulated and simulated cosmic
string induced CMB anisotropies.

trace the underlying probability distribution of fields.
We ground this discussion within the context of cosmic
string induced CMB anisotropies, which are structurally
complex and highly computationally expensive to simu-
late. For scientific applications, generative models must
not only generate realistic observables, but also ensure
these synthetic observables are correctly distributed; a
qualification which is often overlooked.
Leveraging the recently developed wavelet phase har-

monics as a compressed latent representation, we present
a method by which cosmic string induced anisotropies
may accurately be synthesised at high-resolutions in un-
der a minute. For context, flat-sky string simulations
typically take more than a day to evolve, and full-sky
simulations take in excess of 800,000 CPU hours. Impor-
tantly, our method requires significantly less data, which
is a fundamental barrier for the application of many gen-
erative modelling techniques to cosmology. Our syn-
thetic observations are statistically commensurate with
those from simulated observations. In the spirit of re-
producibility and accessibility our code has been made
publicly available �.
Throughout, we consider the case where strings are

generated from a Nambu-Goto action, however in princi-
ple the techniques we develop may equally be applied to
other string models. For example, one may also emulate
anisotropies induced by more complex scenarios such as
cosmic superstring networks (e.g. Urrestilla & Vilenkin
2008). To accommodate fields with increased complex-
ity, more expressive third generation scattering represen-
tations are likely to be useful (e.g. Cheng et al. 2023).
Although this work highlights the exciting poten-

tial for fast emulation of cosmic string induced CMB
anisotropies, it is currently limited to the flat-sky. For
wide-field observations (e.g. Planck) the sky curvature
inevitably becomes non-negligible, hence the extension
of these generative modelling techniques to the sphere
is neccesary. First generation wavelet scattering tech-
niques on the sphere were developed in previous work
(McEwen et al. 2022). In ongoing work we are develop-
ing accelerated and automatically differentiable spherical
harmonic (Price et. al. 2023a in prep), wavelet trans-
forms (Price et. al. 2023b in prep) and third generation
spherical scattering covariances (Mousset et. al. 2023 in
prep). Note that such third generation scattering covari-

https://github.com/astro-informatics/stringgen
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ances have already shown much promise over flat spaces
(Cheng et al. 2023). We are also exploring the fusion of
these emulation techniques with simulation based infer-
ence, for application to many open areas of astrophysics.
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